High freestream turbulence levels have been shown to greatly augment the heat transfer on a gas turbine airfoil. To better understand these effects, this study has examined the effects elevated freestream turbulence levels have on the boundary layer development along a stator vane airfoil. Low freestream turbulence measurements (0.6 percent) were performed as a baseline for comparison to measurements at combustor simulated turbulence levels (19.5 percent). A two-component LDV system was used for detailed boundary layer measurements of both the mean and fluctuating velocities on the pressure and suction surfaces. Although the mean velocity profiles appeared to be more consistent with laminar profiles, large velocity fluctuations were measured in the boundary layer along the pressure side at the high freestream turbulence conditions. Along the suction side, transition occurred further upstream due to freestream turbulence.