The Synchronous Reluctance Machine (SynRM) is an electrical machine in which the useful electromagnetic torque is produced due to rotor saliency. Its high powerand torque-to-mass ratio and very good efficiency make it a cheap and simple alternative for permanent magnet or induction motors, e.g. in electromobility applications. However, because of magnetic nonlinearities, the rotational speed and torque control of a SynRM is a nontrivial task. In the paper, a control algorithm based on a Hamiltonian mathematical model is presented. The model is formulated using measurement results, obtained by the drive controller. An algorithm is tested in the drive system consisting of a SynRM with the classical rotor and a fast prototyping card. The drive dynamic response in transient states is very good, but the proposed algorithm does not ensure the best efficiency after steady state angular velocity is achieved.