2016
DOI: 10.2140/involve.2016.9.623
|View full text |Cite
|
Sign up to set email alerts
|

Mathematical modeling of a surface morphological instability of a thin monocrystal film in a strong electric field

Abstract: A partial differential equation (PDE)-based model combining the effects of surface electromigration and substrate wetting is developed for the analysis of the morphological instability of a monocrystalline metal film in a high temperature environment typical to operational conditions of microelectronic interconnects and nanoscale devices. The model accounts for the anisotropies of the atomic mobility and surface energy. The goal is to describe and understand the timeevolution of the shape of the film surface. … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 26 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?