Natural products continue to provide vital treatment options for cancer. Although their translation into chemotherapeutics is complex, collaborative programs continue to deliver productive pipelines for cancer chemotherapy. A new natural product, seriniquinone, isolated from a marine bacterium of the genus Serinicoccus, demonstrated potent activity over a select set of tumor cell lines with particular selectivity toward melanoma cell lines. Upon entering the cell, its journey began by localization into the endoplasmic reticulum. Within 3 h, cells treated with seriniquinone underwent cell death marked by activation of autophagocytosis and gradually terminated through a caspase-9 apoptotic pathway. Using an immunoaffinity approach followed by multipoint validation, we identified the target of seriniquinone as the small protein, dermcidin. Combined, these findings revealed a small molecule motif in parallel with its therapeutic target, whose potential in cancer therapy may be significant. This discovery defines a new pharmacophore that displayed selective activity toward a distinct set of cell lines, predominantly melanoma, within the NCI 60 panel. This selectivity, along with the ease in medicinal chemical modification, provides a key opportunity to design and evaluate new treatments for those cancers that rely on dermcidin activity. Further, the use of dermcidin as a patient preselection biomarker may accelerate the development of more effective personalized treatments.mode of action | chemical biology | drug discovery | marine natural products | cancer