SummaryMutations play a pivotal role in shaping the trajectory and outcomes of a species evolution and domestication. Maize (Zea mays) has been a major staple crop and model for genetic research for more than 100 yr. With the arrival of site‐directed mutagenesis and genome editing (GE) driven by the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), maize mutational research is once again in the spotlight. If we combine the powerful physiological and genetic characteristics of maize with the already available and ever increasing toolbox of CRISPR‐Cas, prospects for its future trait engineering are very promising. This review aimed to give an overview of the progression and learnings of maize screening studies analyzing forward genetics, natural variation and reverse genetics to focus on recent GE approaches. We will highlight how each strategy and resource has contributed to our understanding of maize natural and induced trait variability and how this information could be used to design the next generation of mutational screenings.