A lack of high‐density rootzone soil moisture (θRZ) observations limits the estimation of continental‐scale, space‐time contiguous θRZ dynamics. We derive a proxy of daily θRZ dynamics — active rootzone degree of saturation (SRZ) — by recursive low‐pass (LP) filtering of surface soil moisture (θS) within a terrestrial water‐energy coupling (WEC) framework. We estimate the LP filter parameters and WEC thresholds for the piecewise‐linear coupling between SRZ and evaporative fraction (EF) at remote sensing and field scale over the Contiguous U.S. We use θS from the Soil Moisture Active‐Passive (SMAP) satellite and 218 in‐situ stations, with EF from the Moderate Resolution Imaging Spectroradiometer. The estimated SRZ compares well against SMAP Level‐4 estimates and in‐situ θRZ, at the corresponding scale. The instantaneous hydrologic state (SRZ) vis‐à‐vis the WEC thresholds is proposed as a rootzone soil moisture stress index (SMSRZ) for near‐real‐time operational agricultural drought monitoring and agrees well with established drought metrics.