We have shown previously that BDNF, neurotrophin-3 (NT-3), chlorphenylthio-cAMP (cpt-cAMP) (a permeant cAMP analog), and membrane depolarization promote spiral ganglion neuron (SGN) survival in vitro in an additive manner, depolarization having the greatest efficacy. Expression of both BDNF and of NT-3 is detectable in cultured SGNs after plating in either depolarizing or nondepolarizing medium. These neurotrophins promote survival by an autocrine mechanism; TrkB-IgG or TrkC-IgG, which block neurotrophin binding to, respectively, TrkB and TrkC, partially inhibit the trophic effect of depolarization. The mitogen-activated protein kinase kinase inhibitor PD98059 and the phosphatidylinositol-3-OH kinase inhibitor LY294002 both abolish trophic support by neurotrophins but only partially inhibit support by depolarization. Inhibition by these compounds is not additive with inhibition by Trk-IgGs. The cAMP antagonist Rp-adenosine-3Ј,5Ј-cyclic-phosphorothioate (Rp-cAMPS) abolishes survival attributable to cptcAMP but has no effect on that attributable to neurotrophins, nor do inhibitors of neurotrophin-dependent survival affect survival attributable to cpt-cAMP. However, Rp-cAMPS does partially inhibit depolarization-dependent survival, an inhibition that is additive with that by Trk-IgGs, PD98059, or LY294002. Moreover, Rp-cAMPS prevents depolarization-dependent survival of PC12 cells maintained in subthreshold levels of NGF. Inhibition of Ca 2ϩ /calmodulin-dependent protein kinases (CaMKs) with KN-62 reduces SGN survival independently of Rp-cAMPS, Trk-IgGs, and LY294002 and additively with them. Combined inhibition of Trk, cAMP, and CaMK signaling prevents depolarization-dependent survival. Thus, survival of SGNs under depolarizing conditions involves additivity among a depolarization-independent autocrine pathway, a cAMPdependent pathway, and a CaMK-dependent pathway.