2014
DOI: 10.1299/mer.2014cm0005
|View full text |Cite
|
Sign up to set email alerts
|

Main aspects of the space–time computational FSI techniques and examples of challenging problems solved

Abstract: Flow problems with moving boundaries and interfaces include fluid-structure interaction (FSI) and a number of other classes of problems, have an important place in engineering analysis and design, and offer some formidable computational challenges. Bringing solution and analysis to such flow problems motivated the development of the Deforming-Spatial-Domain/Stabilized Space-Time (DSD/SST) method. Since its inception, the DSD/SST method and its improved versions have been applied to a diverse set of challenging… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
4
0
1

Year Published

2016
2016
2020
2020

Publication Types

Select...
3
1

Relationship

1
3

Authors

Journals

citations
Cited by 4 publications
(5 citation statements)
references
References 111 publications
0
4
0
1
Order By: Relevance
“…Multi-Domain Method (MDM) [31], and the ST-C data compression method [32]. The special methods used in combination with the ALE-VMS include weak enforcement of no-slip boundary conditions [3335] and sliding interfaces [36,37] (the acronym SI will also indicate that).…”
Section: Methodsmentioning
confidence: 99%
See 3 more Smart Citations
“…Multi-Domain Method (MDM) [31], and the ST-C data compression method [32]. The special methods used in combination with the ALE-VMS include weak enforcement of no-slip boundary conditions [3335] and sliding interfaces [36,37] (the acronym SI will also indicate that).…”
Section: Methodsmentioning
confidence: 99%
“…The ST-C [32], which serves here as a data com- tation and store all that data. This version was named ST-C-SPT in [32].…”
Section: St-cmentioning
confidence: 99%
See 2 more Smart Citations
“…のほかに,オーステナイト相,フェライト相,ベイナイト相がある (Porter et al, 2009) .部品内部を靭性の高い ベイナイト相, 表面を耐摩耗性の高いマルテンサイト相に変態させることで部品の機械特性を制御する. しかし, 熱ひずみや変態ひずみのため,焼入れ後に変形を修正する後加工が必要となり,製造コストがかかる.しかも, 変形には大きなばらつきがあり,特段の規則性が見いだせず,ばらつきの制御は困難な状況にある. 有限要素法による鋼材焼入れプロセスシミュレーションでは,炭素拡散,相変態,熱伝導,熱変形を考える連 成問題を解く必要がある (Denga andJuc, 2013, Liscic et al, 2010) .井上ら (Inoue et al, 1981)は以前よりこの問題 に取組み,解析手法ならびに日本刀も含めた数多くの解析事例を示してきた.Miao ら (Miao et al, 2018)は熱変 形抑制のプロセスパラメータの決定にシミュレーションを活用した.また,アルミ合金に対する熱処理シミュレ ーションの報告もある (Güzel et al, 2009). ほかにも連成シミュレーションの研究は盛んに行われ,流体構造連 成問題 (Ishihara and Horie, 2014, Mitsume et al, 2014, Mola et al, 2011, Takizawa and Tezduyar, 2014のほか,MEMS の静電気-構造の問題 (Martowicz et al, 2011)や圧電解析 (Asai et al, 2007)などの研究がある.連成解析は材料 加工プロセスシミュレーション (Bergheau, 2014, Radi andEl Hami, 2016)には必須であり,溶接シミュレーション (Goldak andAkhlaghi, 2010, Lindgren, 2007) (Guo et al, 2005(Guo et al, , 2013 The differences among 18 cases were seen after 12.6s. Table 2.…”
unclassified