In order to study the evolution of the mechanical properties and macromolecular structures in different macerals of tectonically deformed coal (TDC), vitrinite and inertinite samples were handpicked from six block TDCs in the same coal seam with an increasing deformation degree (unaltered, cataclastic, porphyroclast, scaly and powdery coal). The micro mechanical properties were tested by the nanoindentation experiment and the macromolecular structures were measured using 13C nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR). The results show that the range of hardness and elastic modulus of inertinite is 0.373–1.517 GPa and 4.339–12.158 GPa, respectively, which is significantly higher than that of vitrinite with values of 0.278–0.456 GPa and 4.857–7.810 GPa, respectively. From unaltered coal to powdery coal, the hardness of vitrinite and inertinite gradually decreases, with the difference between these macerals becomes smaller and the elastic modulus of vitrinite shows an increasing trend, while that of inertinite was more variable. Both the NMR and FITR results reveal that the macromolecular structure of inertinite has similar structural transitions as vitrinite. As the degree of deformation increases, the aliphatic side chains become shorter and the aromaticity is increasing. Macromolecular alterations caused by tectonic stress is expected to produce defects in the TDCs, therefore there should be more interspacing among the macromolecular groups for the extrusion of macromolecules caused by the indenter of the nanoindentation experiment, thereby reducing the hardness. The elastic modulus of coal is believed to be related to intermolecular forces, which are positively correlated to the dipole moment. By calculating the dipole moments of the typical aromatic molecular structures with aliphatic side chains, the detachment of the aliphatic side chains and the growth of benzene rings can both increase the dipole moment, which can promote elastic modulus. In addition, the increasing number of benzene rings can create more π-π bonds between the molecules, which can lead to an increase in the intermolecular forces, further increasing the elastic modulus.