2021
DOI: 10.48550/arxiv.2101.00755
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Machine Learning for Robotic Manipulation

Quan Vuong

Abstract: The past decade has witnessed the tremendous successes of machine learning techniques in the supervised learning paradigm, where there is a clear demarcation between training and testing. In the supervised learning paradigm, learning is inherently passive, seeking to distill human-provided supervision in large-scale datasets into high capacity models. Following these successes, machine learning researchers have looked beyond this paradigm and became interested in tasks that are more dynamic. To them, robotics … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 55 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?