2023
DOI: 10.1021/acsestwater.3c00153
|View full text |Cite
|
Sign up to set email alerts
|

Machine-Learning-Based Approach To Assessing Water Quality in a Specific Basin: The Case of Wujingang Basin

Shubo Zhang,
Ruonan He,
Qian Wang
et al.

Abstract: Multidimensional indicators of surface water are key to assessing the water quality. Cost and time could be saved if surface water can be accurately assessed by fewer indicators. Therefore, it is necessary to screen key water quality indicators for different basins. This study collected 35 water quality indicators (42 315 observations) along the Wujingang basin. Cluster analysis and correlation coefficients were used to identify homogeneous categories of water quality indicators. Frequent pattern mining (FPM) … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
1
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 54 publications
(87 reference statements)
0
1
0
Order By: Relevance
“…The special issue includes several review articles encompassing a wide spectrum, ranging from a historical perspective of water data to computational modeling in wastewater treatment to ML modeling of environmental chemical reactions, environmental toxicology, heavy metal removal, and cyanobacterial harmful algal blooms (HABs) . One significant application of these innovative tools is ML-assisted environmental monitoring, which can address diverse problems, such as predicting effluent nutrients or influent flow rates and nutrient loads at wastewater treatment plants, , formation of disinfection byproducts, drivers of the accumulation of potentially toxic elements in sediments, greenhouse gas emissions, , occurrence of PFAS, water quality assessment, microplastics, microcystins, and differentiation of landfill leachate and domestic sludge . ML has also been extensively employed to model environmental chemical reactions and processes, including adsorption onto various materials, , biodegradation, photodegradation, and the physicochemical and meteorological variables that affect the seasonal growth and decline of HABs .…”
mentioning
confidence: 99%
“…The special issue includes several review articles encompassing a wide spectrum, ranging from a historical perspective of water data to computational modeling in wastewater treatment to ML modeling of environmental chemical reactions, environmental toxicology, heavy metal removal, and cyanobacterial harmful algal blooms (HABs) . One significant application of these innovative tools is ML-assisted environmental monitoring, which can address diverse problems, such as predicting effluent nutrients or influent flow rates and nutrient loads at wastewater treatment plants, , formation of disinfection byproducts, drivers of the accumulation of potentially toxic elements in sediments, greenhouse gas emissions, , occurrence of PFAS, water quality assessment, microplastics, microcystins, and differentiation of landfill leachate and domestic sludge . ML has also been extensively employed to model environmental chemical reactions and processes, including adsorption onto various materials, , biodegradation, photodegradation, and the physicochemical and meteorological variables that affect the seasonal growth and decline of HABs .…”
mentioning
confidence: 99%