2018
DOI: 10.1002/ett.3251
|View full text |Cite
|
Sign up to set email alerts
|

Low‐complexity soft‐output MIMO uplink detection for large systems iterative detection and decoding

Abstract: Iterative detection and decoding techniques, based on the turbo principle, have been proposed in the literature to achieve near‐capacity on both single‐ and multiple‐antenna fading communication systems. In the multiple‐input–multiple‐output case, when a very large system is considered, one major issue is the overall system complexity. Here, we propose an iterative detection and decoding scheme for the uplink of coded multiple‐input–multiple‐output systems that replaces the exponential complexity maximum a pos… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
3
0
3

Year Published

2019
2019
2022
2022

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(6 citation statements)
references
References 31 publications
(36 reference statements)
0
3
0
3
Order By: Relevance
“…As the columns of H LR are roughly orthogonal, the noise amplified by it is much less than the one in Equation (2). Therefore, the reliability of quantisation on symbolz eq is higher than on the symbol s eq , and by using (7),z eq can be expressed as…”
Section: Lr-aided Detectorsmentioning
confidence: 99%
See 1 more Smart Citation
“…As the columns of H LR are roughly orthogonal, the noise amplified by it is much less than the one in Equation (2). Therefore, the reliability of quantisation on symbolz eq is higher than on the symbol s eq , and by using (7),z eq can be expressed as…”
Section: Lr-aided Detectorsmentioning
confidence: 99%
“…Hence, suboptimal linear and nonlinear detectors with low complexity are often employed. [5][6][7] However, these schemes cannot obtain the full receive diversity and experience a significant performance loss. Observing this, the lattice reduction (LR) technique is introduced to improve their performance.…”
Section: Introductionmentioning
confidence: 99%
“…. , N ), (3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18) ondeȞ n = Q n H n ∈ C Mt n ×Mt n é a matriz de canal equivalente da n-ésima classe de usuário depois da DSD e n n = Q n N m=1,m =n H m s m + Q n n é o vetor de ruído equivalente. Ressalte-se que como Q n tem linhas ortonormais, o vetor de ruido n = Q n n permanece branco com matriz autocorrelação K n = E[n n H ] = σ 2 n I Mt n É importante ressaltar que os processos de detecção que envolvam o desacoplamento do sinal em grupos (ou classes) de usuários estabelecem um importante compromisso entre qualidade da detecção e complexidade do receptor.…”
Section: Detecção Desacoplada De Sinais -Dsdunclassified
“…A decomposição em valores singulares (SVD) permite calcular as bases para o espaço nulo à esquerda deH n . Aplicando a decomposição emH n temos:H n =Ũ nΣnṼ H n , (3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19) ondeΣ n ∈ C Nr×(Mt−Mt n ) é uma matriz diagonal retangular com os valores singulares deH n na diagonal,Ũ n ∈ C Nr×Nr eṼ H n ∈ C (Mt−Mt n )×(Mt−Mt n ) são matrizes unitárias. Se r n é o posto deH n , r n =rank(H n ) ≤ M t − M tn a decomposição SVD pode ser expressa da forma:…”
Section: Decomposição Em Valores Singulares -Svdunclassified
See 1 more Smart Citation