2008
DOI: 10.1002/glia.20672
|View full text |Cite
|
Sign up to set email alerts
|

Low‐affinity excitatory amino acid uptake in hippocampal astrocytes: A possible role of Na+/dicarboxylate cotransporters

Abstract: The excitatory amino acid transporters (EAATs) underlie the so-called "high affinity" uptake of glutamate, which is well characterized. In contrast, the "low-affinity" uptake of glutamate remains poorly defined, and it has been discussed whether it may represent a mere in vitro artifact. Here we have visualized "low-affinity" excitatory amino acid uptake sites by incubating rat hippocampal slices with the glutamate analogue D-aspartate in the presence of PMB-TBOA, which blocks the EAATs. After fixation of the … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2011
2011
2019
2019

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 42 publications
0
2
0
Order By: Relevance
“…However, glutamate neither induced inward currents nor inhibited succinate uptake in hNaDC3-expressing oocytes, and 1 mM glutamate reduced succinate uptake only by 19.9 ± 8.5 % (N.S.). Therefore, hNaDC3 can be excluded as a transporter facilitating glutamate uptake into astrocytes as opposed to recent speculation (Frizzo et al 2004; Holten et al 2008). …”
Section: Discussionmentioning
confidence: 86%
See 1 more Smart Citation
“…However, glutamate neither induced inward currents nor inhibited succinate uptake in hNaDC3-expressing oocytes, and 1 mM glutamate reduced succinate uptake only by 19.9 ± 8.5 % (N.S.). Therefore, hNaDC3 can be excluded as a transporter facilitating glutamate uptake into astrocytes as opposed to recent speculation (Frizzo et al 2004; Holten et al 2008). …”
Section: Discussionmentioning
confidence: 86%
“…Uptake of glutamate into astrocytes occurs by distinct excitatory amino acid transporters (EAATs) and possibly by low affinity sodium-dependent transport systems (Danboldt 2001; Holten et al 2008). One such candidate transporter may be NaDC3, recently localized to astrocytes (Yodoya et al 2006).…”
Section: Discussionmentioning
confidence: 99%