Trichlorfon is an organophosphate insecticide widely used in aquaculture and agriculture. Little is known about the effects of long-term of low doses trichlorfon exposure on amphibians. In this study, we investigated the effects of low doses trichlorfon on Rana chensinensis tadpoles after exposure to 0.01, 0.1, and 1.0 mg/L trichlorfon for 2 and 4 weeks. Survival, growth, development and mortality were monitored regularly over the course of exposure. The results showed that trichlorfon led to a decrease in tadpole survival. Reductions in growth and disruptions to the development of tadpoles were observed in trichlorfon treatments. Morphological abnormalities of affected tadpoles included axial flexures, skeletal malformations and lateral kinks. Trichlorfon increased the frequency of micronucleus (MN) formation in circulating erythrocytes of tadpoles exposed for 2 weeks to 0.1 and 1.0 mg/L trichlorfon. At all concentrations, an enhanced frequency of MN formation was observed in tadpoles exposed for 4 weeks. Exposure to trichlorfon induced other nuclear abnormalities such as lobed and notched nuclei only in tadpoles exposed to 1.0 mg/L trichlorfon for 4 weeks. In addition, exposure to trichlorfon within the 0.01-1.0 mg/L range increased the genetic damage index in hepatic tissues in all treatments. Apoptosis-associated DNA fragmentation in hepatic tissues occurred in a weak ladder-like pattern. This study presents evidence of low doses trichlorfon effects on amphibians, highlighting the properties of this organophosphate insecticide that jeopardize nontarget species exposed to trichlorfon. K E Y W O R D S development, DNA damage, genotoxicity, tadpoles, trichlorfon