2019
DOI: 10.1007/s00526-019-1625-x
|View full text |Cite
|
Sign up to set email alerts
|

Log-Sobolev-type inequalities for solutions to stationary Fokker–Planck–Kolmogorov equations

Abstract: We prove that every probability measure µ satisfying the stationary Fokker-Planck-Kolmogorov equation obtained by a µ-integrable perturbation v of the drift term −x of the Ornstein-Uhlenbeck operator is absolutely continuous with respect to the corresponding Gaussian measure γ and for the density f = dµ/dγ the integral of f | log(f + 1)| α against γ is estimated via v L 1 (µ) for all α < 1/4, which is a weakened L 1 -analog of the logarithmic Sobolev inequality. This yields that stationary measures of infinite… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0
1

Year Published

2021
2021
2023
2023

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(3 citation statements)
references
References 36 publications
0
2
0
1
Order By: Relevance
“…The sequence {f n } is a martingale with respect to the Gaussian measure γ and the sequence of σ-algebras generated by the projections to R n . According to [15], this sequence is uniformly integrable, hence converges in L 1 (γ) to some function f ∈ L 1 (γ). It is readily seen that µ = f • γ. Convergence also holds in all L p (γ).…”
Section: Integrability Of Gradientsmentioning
confidence: 99%
See 1 more Smart Citation
“…The sequence {f n } is a martingale with respect to the Gaussian measure γ and the sequence of σ-algebras generated by the projections to R n . According to [15], this sequence is uniformly integrable, hence converges in L 1 (γ) to some function f ∈ L 1 (γ). It is readily seen that µ = f • γ. Convergence also holds in all L p (γ).…”
Section: Integrability Of Gradientsmentioning
confidence: 99%
“…Although the condition |b| ∈ L 1 (µ) is not enough for the membership of ̺ in the Sobolev class W 1,1 (R d ), it implies some weaker version of the logarithmic Sobolev inequality (see [15]). Sufficient conditions for the boundedness of ̺ can be found in [20], [7], [12] along with some other bounds (see [9] for a survey).…”
Section: Introductionmentioning
confidence: 99%
“…Лишь в недавней работе [35] дано отрицательное решение этой проблемы путем построения примера, в котором плотность решения имеет неинтегрируемый градиент. Однако в [37] показано, что интегрируемость коэффициента сноса все же влечет некий аналог логарифмического неравенства Соболева. Надо отметить, что при изучении уравнений Фоккера-Планка-Колмогорова возникает немало задач, относящихся 204 МАТЕМАТИЧЕСКАЯ ЖИЗНЬ к классам Соболева и их обобщениям в конечномерных и бесконечномерных пространствах, и здесь В. И. Богачевым также были получены яркие результаты.…”
unclassified