The geochemical characteristics of an approximately 6‐m‐long sediment core collected from the Jeongokri archaeological site (Hantan River, Korea) were examined to determine the provenance of the sediments and to reconstruct the palaeoenvironment of the study area during the Late Pleistocene (200–127 ka). The core sediments were subdivided into two parts based on grain size: an upper (0–380 cm depth) and lower part (>380 cm depth). The lower part was deposited primarily by fluvial processes during an interglacial period [marine isotope stage (MIS) 7] with warm and humid conditions. Conversely, the upper part was mainly deposited by aeolian processes during a cold and dry glacial period (MIS 6). Geochemical characteristics, represented by major, trace and rare earth element (REE) compositions, and textures of the Jeongokri core sediments show distinct differences between the upper and lower parts. The mineralogy and major, trace and REE compositions indicate that the influence of felsic source rocks (e.g. granite) was dominant in the lower sediments, which were derived from the Hantan River. In contrast, increased quartz content and the very fine and homogeneous grain size in the upper sediments indicate an aeolian origin. REE ratios and distribution patterns, and geochemical signatures indicate that these sediments were derived predominantly from Chinese loess deposits and partially from local sediments from the Korean Peninsula; the possible source area of the upper sediments is the northern part of the Yellow Sea basin. The Yellow Sea basin, having mixed geochemical signatures between Chinese loess and Korean‐derived sediments, was exposed because of low sea levels during MIS 6. The exposed Yellow Sea basin was located in the path of winter‐monsoon winds, which may have carried a great deal of airborne sediments from the basin to the Jeongokri area. Copyright © 2011 John Wiley & Sons, Ltd.