<p style='text-indent:20px;'>We consider the linear Schrödinger equation, in 1D, on a bounded interval, with Dirichlet boundary conditions and bilinear scalar control. The small-time local exact controllability around the ground state was proved in [<xref ref-type="bibr" rid="b5">5</xref>], under an appropriate nondegeneracy assumption. Here, we work under a weaker nondegeneracy assumption and we prove the small-time local exact controllability in projection, around the ground state, with estimates on the control (depending linearly on the target) simultaneously in several spaces. These estimates are obtained at the level of the linearized system, thanks to a new result about trigonometric moment problems. Then, they are transported to the nonlinear system by the inverse mapping theorem, thanks to appropriate estimates of the error between the nonlinear and the linearized dynamics.</p>