2013
DOI: 10.1002/cite.201200220
|View full text |Cite
|
Sign up to set email alerts
|

Liquid Phase Oxidation and the Use of Heterogeneous Catalysts – A Critical Overview

Abstract: Numerous homogeneous catalyst‐initiator systems are known and utilized in industrial scale to conduct various autoxidation processes. The reaction mechanism and kinetic details of homogeneous liquid phase autoxidation have been extensively investigated. This article presents an overview on the state of the art of heterogeneous catalyst‐initiator systems in the liquid phase oxidation of hydrocarbons. Mechanistic insights and limitations of the heterogeneous catalyst‐initiator systems are discussed. The potentia… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
10
0
2

Year Published

2014
2014
2020
2020

Publication Types

Select...
4
2

Relationship

0
6

Authors

Journals

citations
Cited by 10 publications
(12 citation statements)
references
References 194 publications
0
10
0
2
Order By: Relevance
“…Using toluene( 2)a sasample substrate, initiation and propagation are commonly believed to include the steps shown in Scheme 1. [18] In the absence of added initiators or catalysts, the origin of the initiating radical X· is often not welld ocumented and the rate of initiation therefore not easily predicted. In addition, the direct reaction of triplet oxygen (1)w ith toluene to yield benzylr adical (3)a nd hydroperoxy radical (4)i se ndothermic by DH 298 (R2) =+169.9 AE 2.0 kJ mol À1 [19] and thusu nlikely to contribute to chain initiation substantially.T he subsequent propagation steps include reactiono ft he initially formed substrater adical 3 with 1 to form peroxy radical 5 (exothermic by DH 298 (R3) = À93.4 AE 2.5 kJ mol À1 ), [20] followed by reaction of 5 with new substrate through hydrogen transfer and formation of hydroperoxide (6).…”
Section: Introductionmentioning
confidence: 99%
“…Using toluene( 2)a sasample substrate, initiation and propagation are commonly believed to include the steps shown in Scheme 1. [18] In the absence of added initiators or catalysts, the origin of the initiating radical X· is often not welld ocumented and the rate of initiation therefore not easily predicted. In addition, the direct reaction of triplet oxygen (1)w ith toluene to yield benzylr adical (3)a nd hydroperoxy radical (4)i se ndothermic by DH 298 (R2) =+169.9 AE 2.0 kJ mol À1 [19] and thusu nlikely to contribute to chain initiation substantially.T he subsequent propagation steps include reactiono ft he initially formed substrater adical 3 with 1 to form peroxy radical 5 (exothermic by DH 298 (R3) = À93.4 AE 2.5 kJ mol À1 ), [20] followed by reaction of 5 with new substrate through hydrogen transfer and formation of hydroperoxide (6).…”
Section: Introductionmentioning
confidence: 99%
“…All the MIRF reactions shown in Tables and are bimolecular in nature, and important references for these processes are, therefore, unimolecular radical‐forming reactions. Benzyl hydroperoxide ( 23 ), for example, plays the role of hydrogen atom abstractor in bimolecular reactions R8, R9, R10, R14 (Table ), and R17 (Table ), but is also considered to co‐initiate the autoxidation of toluene through its unimolecular decomposition to a benzyloxy radical ( 25 ) and hydroxyl radical ( 47 ; Table , reaction R18) . The current best estimates place the O−O bond energy of 23 at Δ H 298 (R18)=+202.0 kJ mol −1 , a value very similar to other alkylhydroperoxides and significantly higher than the reaction enthalpies for the bimolecular MIRF reactions involving this compound.…”
Section: Thermochemical Aspects Of Mirf Reactionsmentioning
confidence: 99%
“…Alle MIRF‐Reaktionen in den Tabellen und sind von Natur aus bimolekular, und ein wichtiger Vergleich für diese Reaktionen sind daher unimolekulare Radikal‐bildende Prozesse. So tritt Benzylhydroperoxid ( 23 ) in den Reaktionen R8, R9, R10, R14 (Tabelle ) und R17 (Tabelle ) in der Rolle des H‐Atomempfängers auf, spielt aber in der Autoxidation von Toluol durch seinen unimolekularen Zerfall zum Benzyloxylradikal ( 25 ) und HO‐Radikal ( 47 ) auch die Rolle des Mitinitiators (Tabelle , Reaktion 18) . Die momentan besten Studien sagen für die O‐O‐Bindungsenergien in 23 einen Wert von Δ H 298 (R18)=+202.0 kJ mol −1 voraus, der denen anderer Alkylhydroperoxide sehr ähnelt und somit deutlich höher liegt als die Reaktionsenergie von MIRF‐Reaktionen, an denen 23 beteiligt ist.…”
Section: Thermodynamische Aspekte Von Mirf‐reaktionenunclassified
“…Ob an MIRF-Reaktionen auch mehr als zwei s-Bindungen beteiligt sein kçnnen, wurde zuerst von Minisci [35,47] Die momentan besten Studien sagen fürd ie O-O-Bindungsenergien in 23 einen Wert von DH 298 (R18) =+202.0 kJ mol À1 voraus,d er denen anderer Alkylhydroperoxide sehr ähnelt [28] und somit deutlich hçher liegt als die Reaktionsenergie von MIRF-Reaktionen, an denen 23 beteiligt ist. Eine zweite wichtige Re-…”
Section: Thermodynamische Aspekte Von Mirf-reaktionenunclassified