Essential part of a mechatronics system is the measurement system that senses the variations in the physical parameters, such as temperature, pressure, displacement, and so on, and converts it to voltage or current. The control of industrial processes and automated manufacturing systems requests accurate, moreover, linearized sensor measurements, where numerous sensors have nonlinear characteristics. In mechatronic systems, accurate measurement of the dynamic variables plays a vital role for the actuators to function properly. This chapter presents linearization methods and a measurement system in mechatronics consisting of temperature sensors and the signal-conditioning circuits, providing detailed information on design process of an embedded measurement and linearization system. This system uses a 32-bit microcontroller for thermocouple (T/C) cold junction compensation, amplification of low output voltage, then conversion to digital, and linearization of the type K thermocouple's output by software to output a desired signal. Piecewise and polynomial methods are used in linearization software, and the implemented embedded system for the linearization of a type K T/C is presented as a case study. The obtained results are compared to give an insight to the researchers who work on measurement systems in mechatronics.