2019
DOI: 10.1166/jno.2019.2536
|View full text |Cite
|
Sign up to set email alerts
|

Light Harvesting Improvement of a-Si:H Solar Cell Through Nano-Grating Structure and Plasmonic Nanoparticles

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2020
2020
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 0 publications
0
1
0
Order By: Relevance
“…A key technique for obtaining good light trapping and enhancing the efficiency of solar cells is to engineer the light behavior by using photonic crystals, 4 diffraction gratings, 5 anti-reection coatings, 6 surface texturing, 7 and metallic nanoparticles. 3,8 Plasmonic nanogratings among other structures show a substantial progress as they can be used either as an innovative back reector patterned on a metal mirror [9][10][11][12] and/or on transparent and conductive oxides (TCO), [13][14][15][16] to improve both the optical path length and optical absorption over a broad spectrum. The effective coupling between metallic nanograting modes and the incident light essentially presents an efficient light trapping developing from surface plasmon resonances and their resultant near-eld light concentration.…”
Section: Introductionmentioning
confidence: 99%
“…A key technique for obtaining good light trapping and enhancing the efficiency of solar cells is to engineer the light behavior by using photonic crystals, 4 diffraction gratings, 5 anti-reection coatings, 6 surface texturing, 7 and metallic nanoparticles. 3,8 Plasmonic nanogratings among other structures show a substantial progress as they can be used either as an innovative back reector patterned on a metal mirror [9][10][11][12] and/or on transparent and conductive oxides (TCO), [13][14][15][16] to improve both the optical path length and optical absorption over a broad spectrum. The effective coupling between metallic nanograting modes and the incident light essentially presents an efficient light trapping developing from surface plasmon resonances and their resultant near-eld light concentration.…”
Section: Introductionmentioning
confidence: 99%