2010
DOI: 10.1073/pnas.1005296107
|View full text |Cite
|
Sign up to set email alerts
|

Lewis base catalysis of bromo- and iodolactonization, and cycloetherification

Abstract: Lewis base catalyzed bromo-and iodolactonization reactions have been developed and the effects of catalyst structure on rate and cyclization selectivity have been systematically explored. The effects of substrate structure on halolactonization reactions and the interaction of those effects with the effects of catalyst structure have been investigated, leading to synthetically useful improvements in cyclization selectivity. The knowledge acquired was applied to the development of Lewis base catalyzed bromoand i… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

6
140
1
5

Year Published

2010
2010
2021
2021

Publication Types

Select...
5
5

Relationship

1
9

Authors

Journals

citations
Cited by 234 publications
(152 citation statements)
references
References 38 publications
6
140
1
5
Order By: Relevance
“…[35] The reaction of an alkenyl-substituted carboxylic acid with molecular iodine under basic conditions proceeds by the addition of iodine to the double bond and subsequent ring closure to deliver an iodolactone in a diasterospecific fashion (Scheme 1 a). [30b, 36] The reaction can be catalyzed to improve the regioselectivity, [37] and has been employed in numerous total syntheses as a reliable way to create new stereocenters. [36,38] The use of a chiral organocatalyst enables highly enantioselective iodolactonization to be achieved (Scheme 1 b).…”
Section: Organic Synthesismentioning
confidence: 99%
“…[35] The reaction of an alkenyl-substituted carboxylic acid with molecular iodine under basic conditions proceeds by the addition of iodine to the double bond and subsequent ring closure to deliver an iodolactone in a diasterospecific fashion (Scheme 1 a). [30b, 36] The reaction can be catalyzed to improve the regioselectivity, [37] and has been employed in numerous total syntheses as a reliable way to create new stereocenters. [36,38] The use of a chiral organocatalyst enables highly enantioselective iodolactonization to be achieved (Scheme 1 b).…”
Section: Organic Synthesismentioning
confidence: 99%
“…[44] Alle genannten Umwandlungen verlaufen im Allgemeinen mit hohen Enantioselektivitäten. Aufgrund der bekannten Reaktivität schwefelhaltiger Katalysatoren [39] Es ist zwar sehr wahrscheinlich, dass die Aktivierung eine oder mehrere dieser Wechselwirkungen beinhaltet, aber es wurden keine mechanistischen Untersuchungen zum Aufbau des Übergangszustands durchgeführt. Damit dieses Modell aber mit den Ergebnissen von Neverov und Brown (Schema 6) in Einklang ist, [23] muss der Thiobromoniumkomplex 28 vor dem Angriff durch das Alken durch Ionisierung vom Succinimidat dissoziieren, um das entsprechende (S-Br)-s*-Orbital wie in 30 b zu exponieren.…”
Section: Lewis-basische Katalyse Mit Schwefelunclassified
“…[38] The Lewis bases influence the constitutional site selectivity indicating that the Lewis base must be present in the stereochemistry-determining transition structure. These observations imply that chiral Lewis base catalysts have the potential to provide enantioenriched products regardless of the rates or mechanisms of the halonium ion racemization.…”
Section: Asymmetric Halogenation Of Olefinsmentioning
confidence: 99%