A spatial geometric plane is defined by the three-dimensional coordinates of a pair of spatial points and the direction that the normal vector establishes, which is formed by joining those points by means of an oriented line segment. This type of planes, in three-dimensional images, is extremely useful as an alternative solution to the problem of low contrast that exhibit the anatomical structures present in cardiac computed tomography images. To do this, after using a predetermined filter bank and in order to define a region of interest, a smart operator based on least squares support vector machines is trained and validated in order to detect the aforementioned coordinates which enables the location of the plane, in the three-dimensional space that contains the considered images. Once the structure that is required to segment is identified, a discriminant function is used that cancels all information not linked to this structure. In this work, the segmentation of the left ventricle, based on region growing technique, is firstly considered and then the left atrium is segmented considering region growing technique and an inverse discriminant function. The results show an excellent correspondence relationship when the spatial union of both structures is made.