In the previous works, to further provide the continuous leakage resilience for the identity-based encryption scheme, a new cryptography primitive, called updatable identity-based hash proof system (U-IB-HPS), was proposed. However, most of the existing constructions have some deficiencies, they either do not have perfect key update function or the corresponding security with tight reduction relies on a non-static complexity assumption. To address the above problems, a new construction of U-IB-HPS is created, and the corresponding security of our system is proved based on the static complexity assumption. Also, the corresponding comparisons and analysis of performances show that our proposal not only achieves the perfect key update function and the anonymity, but also has the tight security reduction. In additional, our proposal achieves the same computational efficiency as other previous systems. To further illustrate the practical function of U-IB-HPS, a generic method of non-interactive data authorization protocol with continuous leakage resilience is designed by employing U-IB-HPS as an underlying tool, which can provide continuous leakage-resilient data authorization function for the cloud computing. Hence, the application field of U-IB-HPS is further extended through our study.