Integrated biostratigraphy and palaeogeographical interpretations of Upper Jurassic-Lower Cretaceous (Callovian-Berriasian) successions are synthesised on the basis of published data and our recent investigations of key sections from the "Tunisian Dorasale" (TD) and "Tunisian Trough" (TT) domains of northern Tunisia. After a revised biostratigraphy had been proposed for the "rosso ammonitico" series, bed-by-bed sampling led to a radiolarian-based first direct dating of the partly coeval biosiliceous series in the TT. Upward within the Jurassic column, an integrated biostratigraphy (ammonites, calpionellids and associated biomicrofacies) allowed precise biozonation for the Kimmeridgian-middle Berriasian interval. The heterogeneity of the Late Jurassic facies in northern Tunisia is the result of two main geodynamical and palaeogeographical events. The first corresponds to the fragmentation of the initial Early Jurassic platform linked to Tethyan rifting. The second event, coeval to the radiolarian-bearing series of the TT, is expressed by a significant deepening in north-west Tunisian palaeoenvironments. During Kimmeridgian -Tithonian times, previous troughs evolved back into carbonate platforms. Within the Maghrebian Belt, Upper Jurassic-lowermost Cretaceous series comprising three major facies groups are easily correlated; minor differences in age are interpreted as due to local tectonic control. Regional correlations confirm, on the one hand, a common geological history for the external segments of the African margin and, on the other hand, a distinct palaeogeographical evolution of the inner domain including the "Dorsales calcaires" and ancient massifs, both being separated by intermediate flysch zone segments.