This work explains the cooling capabilities of ethylene glycol (EG)-based nanofluid containing aluminum oxide (Al2O3) as nanoparticles. Because of its enhanced thermophysical properties, Nanofluids are used in many application areas of mechanical and engineering in the form of nanofluid coolants such as electronics and vehicle cooling, transformer, and computer cooling. Depending on the heating and cooling systems, it is also used as an anti-freezing agent, which lowers the freezing point but enhances boiling point and temperature coolant. After using appropriate similarity transformation, the present Koo–Kleinstreuer–Li model for solving the boundary value problem (BVP) is tackled analytically. A comparison is made with a purely analytical approach by a modified version of the semi-analytical Adomian Decomposition Method (ADM), which is introduced by Duan and Rach (Duan–Rach Approach) and shooting technique. Analytical and graphical treatment of the flow regime is carried out, and the behavior of the leading parameters on the velocity, temperature, concentration profile with the behavior of physical quantities i.e., skin friction coefficient, local Nusselt number, and local Sherwood number are illustrated. This study confirms that, due to extraction in width the flow moves away from the lower plate whereas it moves towards near the upper plate and a rapid decrease in temperature is marked when alumina–EG nanofluids are taken into account.