2008
DOI: 10.1103/physreve.77.016401
|View full text |Cite
|
Sign up to set email alerts
|

Laser ion acceleration via control of the near-critical density target

Abstract: Duration-controlled amplified spontaneous emission with an intensity of 10(13) W/cm(2) is used to convert a 7.5-microm -thick polyimide foil into a near-critical plasma, in which the p -polarized, 45-fs , 10(19) -Wcm (2) laser pulse generates 3.8-MeV protons, emitted at some angle between the target normal and the laser propagation direction of 45 degrees . Particle-in-cell simulations reveal that the efficient proton acceleration is due to the generation of a quasistatic magnetic field on the target rear side… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

4
62
0
2

Year Published

2009
2009
2020
2020

Publication Types

Select...
5
4

Relationship

0
9

Authors

Journals

citations
Cited by 116 publications
(68 citation statements)
references
References 27 publications
4
62
0
2
Order By: Relevance
“…At the exit from the plasma it creates a magnetic azimuthal field and a longitudinal electric field. As a consequence, the protons are efficiently accelerated and nicely collimated ; Nakamura, Bulanov, Esirkepov & Kando (2010); Naumova & Bulanov (2002); Yogo (2008)]. Experimental results with near critical targets confirmed the theoretical and simulation results on the enhancement of maximum energy and reduction of angular spread with respect to the TNSA acceleration mechanism [Fukuda & Bulanov (2009)].…”
Section: Introductionsupporting
confidence: 66%
“…At the exit from the plasma it creates a magnetic azimuthal field and a longitudinal electric field. As a consequence, the protons are efficiently accelerated and nicely collimated ; Nakamura, Bulanov, Esirkepov & Kando (2010); Naumova & Bulanov (2002); Yogo (2008)]. Experimental results with near critical targets confirmed the theoretical and simulation results on the enhancement of maximum energy and reduction of angular spread with respect to the TNSA acceleration mechanism [Fukuda & Bulanov (2009)].…”
Section: Introductionsupporting
confidence: 66%
“…Многозарядные ионы с энергиями вплоть до мегаэлектронвольт регистрировались в нано-и пикосекундной лазерной плазме твердо-тельных мишеней [11,12] . Наиболее перспективным сейчас представляется использование фемтосекундных лазерных им-пульсов в сочетании с кластерными мишенями [13], обеспечивающими более эффективное поглощение энергии лазерного импульса по срав-нению со сплошными мишенями, что позволяет значительно понизить требования к параметрам лазерных установок, используемых для гене-рации быстрых ионов.…”
Section: …10 21unclassified
“…Кроме того, интерферометр Номарского суще-ственно проще в юстировке, чем интерферометр Маха -Цендера, особенно при использовании ультракоротких импульсов зондирующе-го излучения, когда достижение пространственной и временной коге-рентности затруднено. Управление режимами воздействия, синхронизация, регистрация и обработка экспериментальных данных (12,20,24) в значительной степени автоматизированы. Пути передачи аналоговых сигналов ми-нимизированы за счет аналого-цифрового и обратного преобразова-ний для уменьшения наводок и помех.…”
Section: …10 21unclassified
“…Up to now, several schemes for generating energetic protons/ions from laser-solid interaction have been proposed, e.g., target normal sheath acceleration (TNSA), radiation pressure acceleration (RPA), Coulomb explosion acceleration [7], collisionless shock wave acceleration [8][9][10], acceleration with mass-limited target [11][12][13], acceleration via relativistic-induced transparency [14] or breakout afterburner (BOA) [15], and laser ion acceleration with low density targets [16][17][18], laser wakefield acceleration [19], etc., as well as a combination of two or more of these schemes. Most experimental results have been obtained in the TNSA regime [20][21][22][23][24][25][26][27][28][29], which uses relatively thick targets, such as a few or tens of micrometers.…”
Section: Introductionmentioning
confidence: 99%