1995
DOI: 10.1021/j100016a042
|View full text |Cite
|
Sign up to set email alerts
|

Laser Initiation of the Decomposition of Energetic Polymers: Shock Wave Formation

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

2
28
0
1

Year Published

1996
1996
2013
2013

Publication Types

Select...
5
2

Relationship

1
6

Authors

Journals

citations
Cited by 26 publications
(31 citation statements)
references
References 5 publications
2
28
0
1
Order By: Relevance
“…8 given this substitution [209,210]. BenEliahan et al [203] included the energy released by the thermal decomposition, E th , of their glycidyl azido polymer in addition to the laser irradiation energy. These energy values will be influenced by the area irradiated and the volume of polymer ablated, which are listed in Table 4.…”
Section: Resultsmentioning
confidence: 99%
See 3 more Smart Citations
“…8 given this substitution [209,210]. BenEliahan et al [203] included the energy released by the thermal decomposition, E th , of their glycidyl azido polymer in addition to the laser irradiation energy. These energy values will be influenced by the area irradiated and the volume of polymer ablated, which are listed in Table 4.…”
Section: Resultsmentioning
confidence: 99%
“…This is probably due to the incomplete decomposition of the polymer. To avoid this kind of contamination in microfabrica- The ejected plume has been compared to a microexplosion that produces shock waves in the surrounding gaseous media which have been used to classify the explosion and discuss the released energy [201][202][203]. The observed shock waves resemble explosively formed blast waves, which can be analyzed with point blast theory or may necessitate the use of a theory that includes the source mass of the explosion close to the polymer surface.…”
Section: Introductionmentioning
confidence: 99%
See 2 more Smart Citations
“…7, фронт вторичной ударной волны 3 обладает большей скоростью, чем фронт внешней ударной волны 1, очевидно, вследствие меньшего сопротивления среды, обусловленного как ее разрежением, так и температурным увеличением местной скорости звука. Еще одной особенностью рассматриваемых зависимостей яв-ляется то, что внутренняя ударная волна 4 перемещается с почти по-стоянной скоростью, равной местной скорости звука [30], что позво-ляет оценить температуру среды перед ее фронтом, движущимся со скоростью ~ 2,5 км/с ( для воздуха T ~ 15,5 кК).…”
unclassified