2000
DOI: 10.1088/0965-0393/8/1/303
|View full text |Cite
|
Sign up to set email alerts
|

Large-scale atomistic study of core structures and energetics of (()) dislocations in hexagonal close packed metals

Abstract: Using two different kinds of many-body potentials as well as the Lennard-Jones potential for hexagonal close packed metals, we have found that c + a edge dislocations with dislocation lines along 1 100 can split onto the basal plane, forming a non-planar sessile structure. The 'type I' undissociated dislocation core, observed in previous papers, is shown to be stable only for small simulations. The observed dissociated core structure has a large distorted region that we interpret as a (11 21) twin nucleus, whi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
9
2
1

Year Published

2002
2002
2015
2015

Publication Types

Select...
6
1
1

Relationship

0
8

Authors

Journals

citations
Cited by 37 publications
(12 citation statements)
references
References 25 publications
0
9
2
1
Order By: Relevance
“…(8) and (9), the slips on f30 34g and f30 32g planes are presented. Meanwhile, the 1=6h20 23i partial dislocation appears in both Eqs.…”
Section: Discussion On Different Pathsmentioning
confidence: 99%
See 2 more Smart Citations
“…(8) and (9), the slips on f30 34g and f30 32g planes are presented. Meanwhile, the 1=6h20 23i partial dislocation appears in both Eqs.…”
Section: Discussion On Different Pathsmentioning
confidence: 99%
“…Meanwhile, the 1=6h20 23i partial dislocation appears in both Eqs. (8) and (9) due to the dissociation of the 1=3h 1 123i dislocation. This is consistent with our calculation of c surface shown in Fig.…”
Section: Discussion On Different Pathsmentioning
confidence: 99%
See 1 more Smart Citation
“…Atomistic level modeling of dislocation structures and motion is one avenue through which insight into the deformation modes can be obtained. To this end, hc + ai dislocations have been studied at 0 K for several decades using simple interatomic potentials [1][2][3][4][5][6][7][8][9] and embedded atom method (EAM) potential [12,13], but the potentials were usually fitted to hcp zirconium or used very small computational cells of 9000 atoms with only 1000 atoms free to relax, which is too small to accurately capture the extended hc + ai dislocations. Only Liang and Bacon [7][8][9] used a pair potential designed for Mg, but that study was limited by the small cell size.…”
Section: Introductionmentioning
confidence: 99%
“…В результате компьютерного моделирования [70][71][72] были полу-чены многочисленные формы ядра краевой (c  a)-дислокации, кото-рые включают релаксацию ядра, образование высокоэнергетическо-го поверхностного дефекта при расщеплении в плоскости пирамиды II, образование низкоэнергетического дефекта упаковки при рас-щеплении в плоскости базиса и т.д. В результате, если опустить де-тали, остаются следующие формы краевой (c  a)-дислокации: недис-социированная (стянутая) форма; ядро, диссоциированное (разма-занное) в исходной плоскости пирамиды II; ядро, диссоциированное (размазанное) в плоскости базиса и пересекающихся с ней плоско-стях.…”
Section: соотношения между характерными временами и автоблокировкаunclassified