Under the influence of global climate change and urbanization processes, the number of available water resources (AWRs) in basins has become significantly more uncertain, which has restricted the sustainable development of basins. Therefore, it is important for us to understand the relationship between land use (LU) patterns and climate change on AWRs in a basin for sustainable development. To this end, the vector autoregressive (VAR) method was adopted to construct a quantitative model for AWRs in the basin in this study. Taking the Yiluo River Basin (YRB) as an example, the dynamic relationship between the five elements of agricultural land (AD), woodland (WD), grassland (GD), construction land (CD), and annual precipitation (PREP) and AWRs in the basin was studied. The results show the following: (1) The constructed VAR model was stable, indicating that the use of the proposed VAR model to characterize the degree of the effect of LU pattern and PREP on AWRs in the YRB was reasonable and effective. (2) AWRs in the YRB showed a downward trend, and their responses to the change in LU and PREP were delayed. The changes in the AWRs in the YRB tended to occur the year after changes to the LU pattern and PREP occurred. (3) In the long run, the degree of the contribution of each influencing factor to changes to AWRs was 23.76% (AD), 6.09% (PREP), 4.56% (CD), 4.40% (WD), and 4.34% (GD), which meant that the impact of the LU pattern was more than 90%. This study provides new ideas for similar research, water resource allocation, and LU planning in other river basins from a macroscopic perspective.