This paper presents an investigation on the NO oxidation properties of perovskite oxides. La 1Àx Ce x CoO 3 (x = 0, 0.05, 0.1, 0.2, 0.3, 0.4) perovskite-type oxides were synthesized through a citrate method and characterized by XRD, BET and XPS. The catalytic activities were enhanced significantly with Ce substitution, and achieved the best when x was 0.2, but decreased at higher x values. The performed characterizations reveal that the adsorbed oxygen on the surface plays an important role in the oxidation of NO into NO 2 . The surface compounds after the co-adsorption of NO and O 2 at room temperature, were investigated by DRIFTS and TPD experiments. Three species: the bridging nitrate, the hyponitrites and the monodentate nitrate, were formed on the surface. The order of thermal stabilities was as follows: monodentate > hyponitrite > bridging. Among them, only the monodentate nitrate which decomposed at above 300 8C, would desorb NO 2 into the gas phase. When Ce was added, the temperature of monodentate nitrate desorption became low and the adsorption of the other two species decreased. This might be related to the oxidation state of Co on the surface. Analysis by synthesizing the characterization results and catalytic activity data shows that large amounts of adsorbed oxygen, small amount of inactive compounds on the surface and low NO 2 desorption temperature are favorable for the oxidation of NO. #