A numerical model for nonlinear dynamic analysis of planar masonry‐infilled concrete and steel frames strengthened with composites is briefly presented. The model is quite simple and it can simulate main nonlinear effects of these structures. Besides modelling of nonlinear behavior of concrete, steel, masonry, plaster and soil, it can simulate nonlinearities at contact surfaces, changes in structural geometry and construction of a structure over different time phases. The model is based on a relatively small number of material parameters and intended for practical application primarily. The model is verified by using the data of the performed shake‐table tests on masonry‐infilled steel and concrete frames. Numerical results show fairly good agreement with the experimental results. This shows the potential reliability of the developed numerical model for the analysis of planar masonry structures. However, further verifications of the model and corresponding computational software are most welcome.