It is argued that proliferating normal tissues fall into two categories. In type H (for hierarchical) tissues, cells either multiply or perform tissue-specific functions. Sterilizing doses or radiation immediately initiate a gradual depopulation of irreversibly postmitotic, mature cells. The constant rate of functional cell depletion is given by physiological longevity of the cells. Consequently the onset of maximal depopulation is dose-independent and, after a range of radiation doses, the peak of milder damage is seen earlier than that of a more severe one. In type F (for flexible) tissues all cells are assumed to have the potential for proliferation and are also engaged in tissue-specific functions. Radiation leads to dose-dependent loss of the functional cells through their mitotic death, both immediately after exposure and during the next phase of increased compensatory proliferation resulting in accelerated expression of radiation damage ('avalanche'). Consequently the more severe damage following larger doses of radiation is seen earlier than the milder one produced with smaller doses. Assays of cell clonogenicity in vivo concern almost exclusively type H populations. The large radiation/drug/heat doses administered in these assays serve both to dilute the clonogenic cells by at least two orders of magnitude, and to produce a measurable response. When comparing two agents or interpreting their combined action it is advisable to ensure that the dilution step yields qualitatively comparable samples of clonogenic cells to be then characterized in terms of dose-survival curve parameters.