The work is aimed to investigate the mechanical responses of bare dies of the combination of pure tin∕Al–NiV–Cu Under bump metallization (UBM) and packages of pure tin∕Al–NiV–Cu UBM/substrate of standard thickness of aurum. The mechanical properties under multiple reflow and long term high temperature storage test (HTST) tests at different temperatures and the operational life were obtained. A scanning electron microscope was used to observe the growth of IMC and the failure modes in order to realize their reaction and connection. From the empirical results of bare dies, the delamination between IMC and die was observed due to the tests at 260 °C multiple reflow. However, their mechanical properties were not affected. Nevertheless, the bump shear strength of bare dies were decreased by HTST tests. In package, all the results of mechanical properties by multiple reflow test and HTST test were significantly lowered. It was shown that the adhesion between bump and die reduced obviously as tests going on. As for high temperature operational life test in the conditions of 150 °C and 320 mA (5040A∕cm2), the average stable service time of the package was 892 h, and the average ultimate service time of the package was 1053 h.