Strontium isotopic anomalies in meteorites are important in assessing nucleosynthetic sources to, and measuring the timing of, early solar system processes. However, conventional use of a constant 88 Sr/ 86 Sr value in correcting for instrumental mass fractionation during analysis renders measurements ambiguous and removes information on mass-dependent fractionation variations. From doublespike techniques we obtain data for the four stable strontium isotopes free of this ambiguity, and report measurements from a range of meteoritic, lunar and terrestrial materials. The Earth, Moon, basaltic eucrites and feldspars from angrites (differentiated samples) follow a single mass-dependent fractionation line and have a common nucleosynthetic origin in terms of their strontium isotopes. In contrast, bulk rock CI, CV3, CM and CO chondrite samples serve to define another mass-dependent fractionation line, displaced by 94 ± 28 ppm to heavier 84 Sr/ 86 Sr and/or 88 Sr/ 86 Sr ratios than that for the differentiated samples. Our Sr-isotopic data are consistent with a primary contrast in early solar system composition between an outer zone of primitive, mostly undifferentiated, materials and an inner zone of (almost entirely) differentiated materials that accumulated to form the terrestrial planets.