Background:
Major adverse postoperative outcomes (APOs) can greatly affect mortality, hospital stay, care management and planning, and quality of life. This study aimed to evaluate the performance of five machine learning (ML) algorithms for predicting four major APOs after pediatric congenital heart surgery and their clinically meaningful model interpretations.
Methods:
Between August 2014 and December 2021, 23,000 consecutive pediatric patients receiving congenital heart surgery were enrolled. Based on the split date of 1 January 2019, we selected 13,927 participants for the training cohort, and 9,073 participants for the testing cohort. Four predefined major APOs including low cardiac output syndrome (LCOS), pneumonia, renal failure, and deep venous thrombosis (DVT) were investigated. 39 clinical and laboratory features were inputted in five ML models: light gradient boosting machine (LightGBM), logistic regression (LR), support vector machine, random forest, and CatBoost. The performance and interpretations of ML models were evaluated using the area under the receiver operating characteristic curve (AUC) and Shapley Additive Explanations (SHAP).
Results:
In the training cohort, CatBoost algorithms outperformed others with the mean AUCs of 0.908 for LCOS and 0.957 for renal failure, while LightGBM and LR achieved the best mean AUCs of 0.886 for pneumonia and 0.942 for DVT, respectively. In the testing cohort, the best-performing ML model for each major APOs with the following mean AUCs: LCOS (LightGBM), 0.893 (95% confidence interval (CI), 0.884-0.895); pneumonia (LR), 0.929 (95% CI, 0.926-0.931); renal failure (LightGBM), 0.963 (95% CI, 0.947-0.979), and DVT (LightGBM), 0.970 (95% CI, 0.953-0.982). The performance of ML models using only clinical variables was slightly lower than those using combined data, with the mean AUCs of 0.873 for LCOS, 0.894 for pneumonia, 0.953 for renal failure, and 0.933 for DVT. The SHAP showed that mechanical ventilation time was the most important contributor of four major APOs.
Conclusions:
In pediatric congenital heart surgery, the established ML model can accurately predict the risk of four major APOs, providing reliable interpretations for high-risk contributor identification and informed clinical decisions making.