Three cobalt mixed oxide deN2O catalysts, with optimal content of alkali metals (K, Cs), were prepared on a large scale, shaped into tablets, and tested in a pilot plant reactor connected to the bypassed tail gas from the nitric production plant, downstream from the selective catalytic reduction of NOx by ammonia (SCR NOx/NH3) catalyst. High efficiency in N2O removal (N2O conversion of 75–90% at 450 °C, VHSV = 11,000 m3 mbed−3 h−1) was achieved. However, a different activity order of the commercially prepared catalyst tablets compared to the laboratory prepared catalyst grains was observed. Catalytic experiments in the kinetic regime using laboratory and commercial prepared catalysts and characterization methods (XRD, TPR-H2, physisorption, and chemical analysis) were utilized to explain this phenomenon. Experimentally determined internal effectiveness factors and their general dependency on kinetic constants were evaluated to discuss the relationship between the catalyst activity in the kinetic regime and the internal diffusion limitation in catalyst tablets as well as their morphology. The theoretical N2O conversion as a function of the intrinsic kinetic constants and diffusion rate, expressed as effective diffusion coefficients, was evaluated to estimate the final catalyst performance on a large scale and to answer the question of the above article title.