Aiming towards a geometric description of quantum theory, we study the coherent states-induced metric on the phase space, which provides a geometric formulation of the Heisenberg uncertainty relations (both the position-momentum and the time-energy ones). The metric also distinguishes the original uncertainty relations of Heisenberg from the ones that are obtained from non-commutativity of operators. Conversely, the uncertainty relations can be written in terms of this metric only, hence they can be formulated for any physical system, including ones with non-trivial phase space. Moreover, the metric is a key ingredient of the probability structure of continuous-time histories on phase space. This fact allows a simple new proof the impossibility of the physical manifestation of the quantum Zeno and anti-Zeno paradoxes. Finally, we construct the coherent states for a spinless relativistic particle, as a non-trivial example by which we demonstrate our results.