4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.Additional information:
Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-pro t purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. Abstract We report sedimentological evidence for a tsunami from a coastal lake at Innaarsuit, Disko Bugt (west Greenland), which was most likely generated by a rolling iceberg. The tsunami invaded the lake c. 6000 years ago, during a period of time when relative sea level (RSL) was falling quickly because of isostatic rebound. We use the background rate of RSL fall, together with an age model for the sediment sequence, to infer a minimum wave runup during the event of c. 3.3 m. The stratigraphic signature of the event bears similarities to that described from studies of the early-Holocene Storegga slide tsunami in Norwegian coastal basins. Conditions conducive to iceberg tsunami include a supply of icebergs, deep water close to the shore, a depositional setting protected from storms or landslide tsunami, and a coastal configuration that has the potential to amplify the height of tsunami waves as water depths shallow and the waves approach and impact the coast. Future warming of polar regions will lead to increased calving and iceberg production, at a time when human use of polar coasts will also grow. We predict, therefore, that iceberg-generated tsunami will become a growing hazard in polar coastal waters, especially in areas adjacent to large, fast-flowing, marine-terminating ice streams that are close to human populations or infrastructure.