2015
DOI: 10.1017/s1751731115001445
|View full text |Cite
|
Sign up to set email alerts
|

Is there a relationship between genetic merit and enteric methane emission rate of lactating Holstein-Friesian dairy cows?

Abstract: The present study was undertaken to examine the effect of cow genetic merit on enteric methane (CH 4 ) emission rate. The study used a data set from 32 respiration calorimeter studies undertaken at this Institute between 1992 and 2010, with all studies involving lactating Holstein-Friesian dairy cows. Cow genetic merit was defined as either profit index (PIN) or profitable lifetime index (PLI), with these two United Kingdom genetic indexes expressing the expected improvement in profit associated with an indivi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
3
0
2

Year Published

2016
2016
2023
2023

Publication Types

Select...
4
2

Relationship

0
6

Authors

Journals

citations
Cited by 7 publications
(5 citation statements)
references
References 23 publications
(29 reference statements)
0
3
0
2
Order By: Relevance
“…The long‐term and cumulative genetic selection programme has resulted in dramatic improvement in milk production and overall performance for dairy cows, in which genetic potential will be inherited by their offsprings (Dong et al., ). Therefore, well‐rationed dietary protein and energy for those young animals are of great importance in nutrient utilization efficiency, growth performance, and subsequent reproduction and production potentials (Brown et al., ; Krpálková et al., ).…”
Section: Introductionmentioning
confidence: 99%
“…The long‐term and cumulative genetic selection programme has resulted in dramatic improvement in milk production and overall performance for dairy cows, in which genetic potential will be inherited by their offsprings (Dong et al., ). Therefore, well‐rationed dietary protein and energy for those young animals are of great importance in nutrient utilization efficiency, growth performance, and subsequent reproduction and production potentials (Brown et al., ; Krpálková et al., ).…”
Section: Introductionmentioning
confidence: 99%
“…Sin embargo, durante este proceso fermentativo se generan gases que son expulsados a la atmósfera causando el efecto invernadero, contribuyendo al calentamiento global (Gerber et al, 2013). Entre estos gases se encuentra el metano, el cual es un gas de efecto invernadero que presenta un potencial de calentamiento 25 veces superior al CO 2 siendo el segundo gas más importante (Dong et al, 2015). Ante esta situación se buscan alternativas nutricionales que ayuden a modular la fermentación ruminal disminuyendo de este modo las emisiones de gases de efecto invernadero, por lo cual ha incrementado el interés del uso de plantas y extractos para mitigar las emisiones de metano ruminal (Woodward et al, 2001;Waghorn et al, 2002) así como el uso de compuestos fitoquímicos como saponinas, taninos y aceites esenciales, los cuales forman parte estructural de plantas y que se les han conferido actividades inmunomoduladores, antimicrobianas, entre otras (Huang et al, 2018), con efectos positivos en disminución de metano, afectando el proceso de metanogénesis repercutiendo directamente en la población de bacterias metanogénicas (Tan et al, 2011;Saminathan et al, 2016;Ugbogu et al, 2019).…”
Section: Materiales Y Métodosunclassified
“…Los rumiantes emiten entre 18 y 25% de los gases que causan el efecto invernadero (GEI), dependiendo de la estrategia de alimentación que se tenga, el CH 4 es el segundo gas que contribuye a este efecto (1)(2)(3)(4). La alimentación de los rumiantes en las regiones tropicales y subtropicales se basa principalmente en el uso de pastos forrajeros cuyo contenido de celulosa y de hemicelulosa, es mayor que en los pastos de clima templado (5), éste mayor contenido de pared celular es potencialmente fermentado por especies de bacterias celulolíticas como Ruminococcus flavefaciens, Ruminococcus albus y Fibrobacter succinogenes, que transforman la glucosa en acetato y butirato, cuya ruta metabólica produce hidrógeno (H 2 ) y bióxido de carbono (CO 2 ), que son los substratos principales para las archaeas metanogénicas como Methanobacterium formicicum, Methanobrevibacter ruminantium, Methanomicrobium mobile, Methanosarcina bacteri y Methanosarcina majei (6) donde la mayor producción de CH 4 se tiene mediante esta vía metabólica (6,7) La producción de CO 2 y CH 4 es un proceso necesario en la bioquímica ruminal para la obtención de energía, este proceso reduce la acumulación de H 2 y la caída del pH, para mantener la ecología ruminal en condiciones favorables (8).…”
Section: Introductionunclassified
“…Ruminants emit between 18 and 25% of the greenhouse gases (GHG), depending on the feeding strategy that has been established, CH 4 is the second largest contributor to this effect (1)(2)(3)(4). Ruminant feed in tropical and subtropical regions is mainly based on the use of forage grasses whose cellulose and hemicellulose content is higher than in temperate climate grasses (5), this higher cell wall content being potentially fermented by cellulolytic bacteria species such as Ruminococcus flavefaciens, Ruminococcus albus and Fibrobacter succinogenes, which transform glucose into acetate and butyrate, whose metabolic pathway produces hydrogen (H 2 ) and carbon dioxide (CO 2 ), which are the main substrates for methanogenic archaea such as Methanobacterium formicicum, Methanobrevibacter ruminantium, Methanomicrobium mobile, Methanosarcina bacteri and Methanosarcina majei (6), where the highest production of CH 4 is produced by this metabolic pathway (6,7).…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation