2022
DOI: 10.1007/s11270-022-05614-9
|View full text |Cite
|
Sign up to set email alerts
|

Iron Oxide Particles Loaded Activated Carbon Cloth and Comparison of Adsorption and Fenton Reaction for Efficient Cationic and Anionic Dyes Removal

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
5

Relationship

1
4

Authors

Journals

citations
Cited by 6 publications
(2 citation statements)
references
References 35 publications
0
2
0
Order By: Relevance
“…The linear variants of Freundlich, Langmuir, Dubinin–Radushkevich (D–R), Tempkin, and Harkins–Jura isotherms models were used to fit the data as stated in Equations (2)–(6), respectively. [ 18 ] 0.33emlogqebadbreak=logKf0.33emgoodbreak+1nlogCe,$$\begin{equation}\ \log {q}_{\mathrm{e}} = \log {K}_{\mathrm{f}}\ + \frac{1}{n}\log {C}_{\mathrm{e}},\end{equation}$$ 0.33emCnormaleqnormalebadbreak=1bqmaxCnormaleqmax,$$\begin{equation}\ \frac{{{C}_{\mathrm{e}}}}{{{q}_{\mathrm{e}}}} = \frac{1}{{b{q}_{{\mathrm{max}}}\frac{{{C}_{\mathrm{e}}}}{{{q}_{{\mathrm{max}}}}}}},\end{equation}$$ 0.33emlnqebadbreak=lnqs0.33emgoodbreak−KDε2,$$\begin{equation}\ \ln {q}_{\mathrm{e}} = \ln {q}_{\mathrm{s}}\ - {K}_{\mathrm{D}}{\varepsilon }^2,\end{equation}$$ 0.33emqebadbreak=RTbnormalT0.33emlnKTgoodbreak+RTbnormalTlnCe,$$\begin{equation}\ {q}_{\mathrm{e}} = \frac{{RT}}{{{b}_{\mathrm{T}}}}\ \ln {K}_{\mathrm{T}} + \frac{{RT}}{{{b}_{\mathrm{T}}}}\ln {C}_{\mathrm{e}},\end{equation}$$ 0.33em1qnormale2badbreak=BA0.33emgoodbreak−1AlogCe,$$\begin{equation}\ \frac{1}{{q_{\mathrm{e}}^2}} = \frac{B}{A}\ - \frac{1}{A}\log {C}_{\mathrm{...…”
Section: Methodsmentioning
confidence: 99%
See 1 more Smart Citation
“…The linear variants of Freundlich, Langmuir, Dubinin–Radushkevich (D–R), Tempkin, and Harkins–Jura isotherms models were used to fit the data as stated in Equations (2)–(6), respectively. [ 18 ] 0.33emlogqebadbreak=logKf0.33emgoodbreak+1nlogCe,$$\begin{equation}\ \log {q}_{\mathrm{e}} = \log {K}_{\mathrm{f}}\ + \frac{1}{n}\log {C}_{\mathrm{e}},\end{equation}$$ 0.33emCnormaleqnormalebadbreak=1bqmaxCnormaleqmax,$$\begin{equation}\ \frac{{{C}_{\mathrm{e}}}}{{{q}_{\mathrm{e}}}} = \frac{1}{{b{q}_{{\mathrm{max}}}\frac{{{C}_{\mathrm{e}}}}{{{q}_{{\mathrm{max}}}}}}},\end{equation}$$ 0.33emlnqebadbreak=lnqs0.33emgoodbreak−KDε2,$$\begin{equation}\ \ln {q}_{\mathrm{e}} = \ln {q}_{\mathrm{s}}\ - {K}_{\mathrm{D}}{\varepsilon }^2,\end{equation}$$ 0.33emqebadbreak=RTbnormalT0.33emlnKTgoodbreak+RTbnormalTlnCe,$$\begin{equation}\ {q}_{\mathrm{e}} = \frac{{RT}}{{{b}_{\mathrm{T}}}}\ \ln {K}_{\mathrm{T}} + \frac{{RT}}{{{b}_{\mathrm{T}}}}\ln {C}_{\mathrm{e}},\end{equation}$$ 0.33em1qnormale2badbreak=BA0.33emgoodbreak−1AlogCe,$$\begin{equation}\ \frac{1}{{q_{\mathrm{e}}^2}} = \frac{B}{A}\ - \frac{1}{A}\log {C}_{\mathrm{...…”
Section: Methodsmentioning
confidence: 99%
“…The linear variants of Freundlich, Langmuir, Dubinin-Radushkevich (D-R), Tempkin, and Harkins-Jura isotherms models were used to fit the data as stated in Equations ( 2)-( 6), respectively. [18] log…”
Section: Adsorption Isothermsmentioning
confidence: 99%