2010
DOI: 10.1088/2041-8205/717/2/l98
|View full text |Cite
|
Sign up to set email alerts
|

IONIZATION-DRIVEN FRAGMENTATION OF GAS OUTFLOWS RESPONSIBLE FOR FeLoBALs IN QUASARS

Abstract: We show that time variations in the UV ionizing continuum of quasars, on scales of ∼1 year, affect the dynamic structure of the plasmas responsible for low ionization broad absorption lines. Variations of the ionizing continuum produce non-equilibrium photoionization conditions over a significant fraction of the absorbing clouds and supersonically moving ionization fronts. When the flux drops the contraction of the ionized region drives a supersonic cooling front towards the radiation source and a rarefaction … Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
4
0

Year Published

2013
2013
2024
2024

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(4 citation statements)
references
References 22 publications
0
4
0
Order By: Relevance
“…On the other hand, if the thermal front moves supersonically the gas has no time to adjust itself and strong pressure imbalances, like those seen in Figure 7, will appear. Thus, shocks will be formed in the slab, which can ultimately result in the fragmentation of the cloud (Bautista and Dunn 2010). Either way, variations in the ionizing flux will have important kinematic effects on the cloud.…”
Section: Step Flux Function On a Slab In Pressure Equilibriummentioning
confidence: 99%
See 1 more Smart Citation
“…On the other hand, if the thermal front moves supersonically the gas has no time to adjust itself and strong pressure imbalances, like those seen in Figure 7, will appear. Thus, shocks will be formed in the slab, which can ultimately result in the fragmentation of the cloud (Bautista and Dunn 2010). Either way, variations in the ionizing flux will have important kinematic effects on the cloud.…”
Section: Step Flux Function On a Slab In Pressure Equilibriummentioning
confidence: 99%
“…There are many astrophysical systems in which time-dependent photoionization (TDP) modeling has been discussed. Some examples include the interstellar medium (Lyu & Bruhweiler 1996;Joulain et al 1998), H II regions (Rodriguez-Gaspar & Tenorio-Tagle 1998;Richling & Yorke 2000), planetary nebulae (Harrington & Marionni 1976;Harrington 1977;Schmidt-Voigt & Koeppen 1987;Frank & Mellema 1994;Marten & Szczerba 1997), novae and supernovae (Hauschildt et al 1992;Beck et al 1995;Kozma & Fransson 1998;Dessart & Hillier 2008), the reionization of the intergalactic medium (Ikeuchi & Ostriker 1986;Shapiro & Kang 1987;Shapiro et al 1994;Ferrara & Giallongo 1996;Giroux & Shapiro 1996;Ricotti et al 2001), ionization of the solar chromosphere (Carlsson & Stein 2002), Gamma ray bursts (Perna & Loeb 1998;Böttcher et al 1999), accretion discs (Woods et al 1996), active galactic nuclei (Nicastro et al 1997(Nicastro et al , 1999Krongold et al 2007), the evolution of the early Universe (Seager et al 2011), and quasar FeLoBALs (Bautista & Dunn 2010). However, there is as yet no general tool to model non-equilibrium photoionized plasmas.…”
Section: Introductionmentioning
confidence: 99%
“…AGN variability has been extensively observed and reveals significant variability (20%) on timescales as short as ∼10 3 s. (Silva et al 2016). Time-dependent photoionization has been explored previously in models for the interstellar medium (Lyu & Bruhweiler 1996;Joulain et al 1998), H II regions (Rodriguez-Gaspar & Tenorio-Tagle 1998; Richling & Yorke 2000), planetary nebulae (Harrington & Marionni 1976;Harrington 1977;Schmidt-Voigt & Koeppen 1987;Frank & Mellema 1994;Marten & Szczerba 1997), novae, and supernovae (Hauschildt et al 1992;Beck et al 1995;Kozma & Fransson 1998), reionization of the intergalactic medium (Ikeuchi & Ostriker 1986;Shapiro & Kang 1987;Ferrara & Giallongo 1996;Giroux & Shapiro 1996), ionization of the solar chromosphere (Carlsson & Stein 2002), gamma-ray bursts (Perna & Loeb 1998;Böttcher et al 1999), accretion disks (Woods et al 1996), AGNs (Nicastro et al 1997;Krongold 2007), the evolution of the early universe (Seager et al 2011), and quasar FeLoBALs (Bautista & Dunn 2010). Gnat (2017) calculated the time-dependent cooling in photoionized plasma in the context of intergalactic gas.…”
Section: Introductionmentioning
confidence: 99%
“…(Silva et al 2016). Time dependent photoionization has been explored previously in models for the interstellar medium (Lyu & Bruhweiler 1996;Joulain et al 1998), H II regions (Rodriguez-Gaspar & Tenorio-Tagle 1998;Richling & Yorke 2000), planetary nebulae (Harrington & Marionni 1976;Harrington 1977;Schmidt-Voigt & Koeppen 1987;Frank & Mellema 1994;Marten & Szczerba 1997), novae and supernovae (Hauschildt et al 1992;Beck et al 1995;Kozma & Fransson 1998), reionization of the intergalactic medium (Ikeuchi & Ostriker 1986;Shapiro & Kang 1987;Ferrara & Giallongo 1996;Giroux & Shapiro 1996), ionization of the solar chromosphere (Carlsson & Stein 2002), gamma-ray bursts (Perna & Loeb 1998;Böttcher et al 1999), accretion disks (Woods et al 1996), active galactic nuclei (Nicastro et al 1997;Krongold 2007), evolution of the early universe (Seager et al 2011), and quasar FeLoBALs (Bautista & Dunn 2010). Gnat (2017) calculated the time dependent cooling in photoionized plasma in the context of intergalactic gas.…”
Section: Introductionmentioning
confidence: 99%