The photoacoustic method with piezoelectric detection for the simultaneous evaluation of the thermophysical properties is proposed. The approach is based on the settling of an additional heat sink for redistribution of heat fluxes deposited on the sample surface. Firstly, the approach was tested on the porous silicon with welldefined morphology and well-studied properties. Then, heat capacity and thermal conductivity of silicon nanowires arrays have been investigated by recovering the experimental data through numerical simulations. The decrease of heat capacity and effective thermal conductivity of the samples upon increasing thickness and porosity of the sample is observed. Such behavior could be caused by the increase of the structure heterogeneity. In particular, this can be related to larger disorder (increased density of broken nanowires and larger porosity) that appears during the etching process of the thick layers.