This article describes a holistic DC link architecture design method that considers the end-application of the drive and its corresponding constraints e.g. the maximum battery ripple current for a battery-supplied inverter. Also, the levers that are available to comply with the design criteria are presented e.g. the use of interleaved carrier waves. This holistic approach will result in a feasible and performant Integrated Modular Motor Drive from an application point of view. Finally, a platform is presented that was developed for feasibility and performance assessment of various DC link architectures obtained from the holistic design approach. The platform comprises a fifteen phase integrable modular motor drive for an Axial Flux Permanent Magnet Synchronous Machine. It allows non-intrusive reconfiguration of the DC link architecture and implementation of various control strategies and interleaved PWM schemes.