The polycrystalline Co1−xZnxCr0.5Fe1.5O4 series with (x = 0, 0.2, 0.4, 0.6, 0.8, 1.0) has been synthesized by conventional ceramic rout method. The structural and elastic properties have been investigated by X-ray diffractometer and Fourier transform spectroscopy. Both XRD and FTIR confirm the formation of single phase cubic spinel ferrites. The cationic distribution for all samples has been proposed. The lattice parameter, X-ray density, hoping length, bond length, and packing factors–in accompaniment with variations in the zinc concentration–have been studied. The IR band position has been explained by the cations involved in the structure. The elastic moduli such as Young's modulus, bulk modulus, rigidity modulus and Poison's ratio have bee calculated using force constants. Scanning electron microscope (SEM) observation conveys information about the agglomeration of particles. The hysteresis curve obtained from vibrating sample magneto meter (VSM) conveys information about the soft nature of prepared compositions. The saturation magnetization decreases with addition of zinc ions and coercivity is almost zero. An increase in band gap energy has been observed with addition of zinc by Ultraviolet Visible Spectroscopy (UV-VIS), which is due to small crystallite size.