Glioblastoma IV (GBM) is one of the deadliest malignant diseases in adults and is characterized by a high mutation rate and multiple traits to suppress inborn and acquired immunity. We here approached autophagy-related cell death in newly established GBM cell lines derived from individual tumor isolates. Treatment with a small molecule, termed Vacquinol-1 (Vac) exhibited 100% GBM cell death, which was related to mitochondrial dysfunction, calcium-induced endoplasmic reticulum (ER)-stress, and autophagy. The toxicity of Vac was significantly increased by the inhibition of transient receptor potential cation channel, subfamily M, member 7 (TRPM7). TRPM7 is overexpressed in GBM as well as in many other tumors and thus may be a potential target by the natural compound carvacrol. Of note, at higher concentrations, Vac also induced growth inhibition and cell death in non-transformed cell types. However, in the presence of the TRPM7 inhibitor carvacrol, the tumor-selective effect of Vac was very much increased. Results given in the present study are based on long-term video microscopy using IncuCyteZOOM ® , calcium measurements, and 3D ultrastructural analysis using the cryofixed material.