Confinement can substantially alter the physicochemical properties of materials by breaking translational isotropy and rendering all physical properties positiondependent. Molecular dynamics (MD) simulations have proven instrumental in characterizing such spatial heterogeneities and probing the impact of confinement on materials' properties. For static properties, this is a straightforward task and can be achieved via simple spatial binning. Such an approach, however, cannot be readily applied to transport coefficients due to lack of natural extensions of autocorrelations used for their calculation in the bulk. The prime example of this challenge is diffusivity, which, in the bulk, can be readily estimated from the particles' mobility statistics, which satisfy the Fokker−Planck equation. Under confinement, however, such statistics will follow the Smoluchowski equation, which lacks a closed-form analytical solution. This brief review explores the rich history of estimating profiles of the diffusivity tensor from MD simulations and discusses various approximate methods and algorithms developed for this purpose. Besides discussing heuristic extensions of bulk methods, we overview more rigorous algorithms, including kernel-based methods, Bayesian approaches, and operator discretization techniques. Additionally, we outline methods based on applying biasing potentials or imposing constraints on tracer particles. Finally, we discuss approaches that estimate diffusivity from mean first passage time or committor probability profiles, a conceptual framework originally developed in the context of collective variable spaces describing rare events in computational chemistry and biology. In summary, this paper offers a concise survey of diverse approaches for estimating diffusivity from MD trajectories, highlighting challenges and opportunities in this area.