Lutzomyia longipalpis and Lutzomyia cruzi are the main sandflies species involved in the transmission of Leishmania infantum protozoan in Brazil. The morphological characteristics can be used for species identification of males specimens, while females are indistinguishable. Although, sandflies identification is essential to understand vectorial capacity, and susceptibility to infectious agents or insecticides, there is a lack of new strategies for specimen identification. In this study, Fourier transform infrared photoacoustic spectroscopy combined with multivariate analysis identified intraspecific differences between Lutzomyia populations. Successfully group clustering was achieved by principal component analysis. The main differences observed can be related to the protein content of the specimens. A classification with 100% accuracy was obtained using machine learning approach, allowing the identification of sandflies specimens.