2024
DOI: 10.1021/acs.jpca.3c06159
|View full text |Cite
|
Sign up to set email alerts
|

Interpretable Performance Models for Energetic Materials using Parsimonious Neural Networks

Robert J. Appleton,
Peter Salek,
Alex D. Casey
et al.

Abstract: Predictive models for the performance of explosives and propellants are important for their design, optimization, and safety. Thermochemical codes can predict some of these properties from fundamental quantities such as density and formation energies that can be obtained from first principles. Models that are simpler to evaluate are desirable for efficient, rapid screening of material screening. In addition, interpretable models can provide insight into the physics and chemistry of these materials that could b… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
1
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 55 publications
0
1
0
Order By: Relevance
“…In JPC A , the virtual special issue papers span applications to all aspects of chemical dynamics, molecular property prediction, and electronic structure. A large number of contributions within this collection in JPC A address fundamental research into new or adaptation of existing models for applications of ML to physical chemistry spanning many topical areas. Many of the papers relate to using ML/AI and other data-driven models to enhance methods within physical chemistry. A number of contributions address the creation or analysis of ground and excited state potential energy surfaces, while others address dynamics, kinetics, and thermochemistry, a major area of interest within JPC A . The use of ML to improve accuracy and efficiency in calculation of molecular properties is also addressed in many articles. …”
mentioning
confidence: 99%
“…In JPC A , the virtual special issue papers span applications to all aspects of chemical dynamics, molecular property prediction, and electronic structure. A large number of contributions within this collection in JPC A address fundamental research into new or adaptation of existing models for applications of ML to physical chemistry spanning many topical areas. Many of the papers relate to using ML/AI and other data-driven models to enhance methods within physical chemistry. A number of contributions address the creation or analysis of ground and excited state potential energy surfaces, while others address dynamics, kinetics, and thermochemistry, a major area of interest within JPC A . The use of ML to improve accuracy and efficiency in calculation of molecular properties is also addressed in many articles. …”
mentioning
confidence: 99%