Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Earthquake early warning (EEW) is of great significance in mitigating seismic disasters. Traditional EEW algorithms, which are knowledge‐driven approaches, rely on seismologists' analysis. The limited intensity measures were extracted by seismologists from P‐wave signals. And there is considerable uncertainty for predicting epicentral distance, magnitude, peak ground acceleration (PGA), and peak ground velocity (PGV). Currently, data‐driven deep learning methods with the strong learning abilities do not consider knowledge information from seismologists in EEW; thus, there is unexplored potential in enhancing the performance of deep learning models for EEW. Here, we construct the Data‐knowledge driven Hybrid deep Learning network (DHLnet) for EEW using the waveform input, knowledge embedding, convolutional neural network and graph convolutional network, aiming to integrate knowledge information from knowledge‐driven methods and the strong learning ability of data‐driven deep learning methods, that is, improving the performance of EEW. For the same test data set, compared with knowledge‐driven methods and data‐driven deep learning models, we demonstrate that DHLnet enhances the timeliness and robustness in predicting the epicentral distance, magnitude, PGA, and PGV during 10 s time window following the arrival of P‐wave. Furthermore, to validate the generalization and robustness of the DHLnet in EEW, we applied the trained DHLnet to an independent data set, within first few seconds after an earthquake occurs, DHLnet can provide robust magnitude estimation, epicentral distance estimation and high alarm accuracy. The potential of the proposed network is to enhance the performance of EEW systems and provides new insights into the exploration of deep learning methods for EEW domain.
Earthquake early warning (EEW) is of great significance in mitigating seismic disasters. Traditional EEW algorithms, which are knowledge‐driven approaches, rely on seismologists' analysis. The limited intensity measures were extracted by seismologists from P‐wave signals. And there is considerable uncertainty for predicting epicentral distance, magnitude, peak ground acceleration (PGA), and peak ground velocity (PGV). Currently, data‐driven deep learning methods with the strong learning abilities do not consider knowledge information from seismologists in EEW; thus, there is unexplored potential in enhancing the performance of deep learning models for EEW. Here, we construct the Data‐knowledge driven Hybrid deep Learning network (DHLnet) for EEW using the waveform input, knowledge embedding, convolutional neural network and graph convolutional network, aiming to integrate knowledge information from knowledge‐driven methods and the strong learning ability of data‐driven deep learning methods, that is, improving the performance of EEW. For the same test data set, compared with knowledge‐driven methods and data‐driven deep learning models, we demonstrate that DHLnet enhances the timeliness and robustness in predicting the epicentral distance, magnitude, PGA, and PGV during 10 s time window following the arrival of P‐wave. Furthermore, to validate the generalization and robustness of the DHLnet in EEW, we applied the trained DHLnet to an independent data set, within first few seconds after an earthquake occurs, DHLnet can provide robust magnitude estimation, epicentral distance estimation and high alarm accuracy. The potential of the proposed network is to enhance the performance of EEW systems and provides new insights into the exploration of deep learning methods for EEW domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.