An Interpolated Differential Operator (IDO) scheme using a new interpolation function is proposed. The gradient of the dependent variable is calculated at the position shifted by a half grid size from that of the physical value. A fourth-order Hermite-interpolation function is constructed locally using both the value and the gradient defined at staggered positions. The numerical solutions for the Poisson, diffusion, advection and wave equations have fourthorder accuracy in space. In particular, for the Poisson and diffusion equations, the GradientStaggered (G-S) IDO scheme shows better accuracy than the original IDO scheme. As a practical application, the Direct Numerical Simulation (DNS) for two-dimensional isotropic homogeneous turbulence is examined and a comparable result with that of the original IDO scheme is obtained. The G-S IDO scheme clearly contributes to high-accurate computations for solving partial differential equations in computational mechanics.